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1  Introduction

The South Asian Summer Monsoon (SASM) represents 
one of the most important features of the global climate 
system. Interannual variations in the strength of the mon-
soon rains affect weather patterns across the globe and the 
lives and livelihoods of fully half the world’s population. 
Efforts to understand and predict (Blanford 1884; Walker 
and Bliss 1932) the year-to-year variations in the monsoon 
rains have been ongoing for well over a century. Many of 
the efforts to predict these variations have been statistical 
in nature, with a focus on identifying, understanding, and 
utilizing the time-lagged associations between rainfall over 
southeast Asia and remote sea surface temperature (SST) 
anomalies. These relationships have the potential to pro-
vide predictability even to quantities as notoriously cha-
otic as precipitation by linking them to more slowly and 
smoothly varying features of the climate system, such as 
ocean temperature (Charney and Shukla 1981).

Perhaps the most commonly studied relationship has 
been that of all-India rainfall and the El Niño-Southern 
Oscillation. All-India rainfall (AIR), defined as rainfall 
over the Indian landmass, and the El Niño-Southern Oscil-
lation (ENSO) were significantly negatively correlated 
throughout much of the twentieth century. Lower than nor-
mal AIR is often associated with El Niño events. Likewise, 
AIR has tended to be above average during La Niña events 
(Rasmusson and Carpenter 1983). However, the strength 
of this relationship between ENSO and the monsoon, as 
measured by correlation coefficients calculated over a 
sliding window, has not been stationary with time (e.g., 
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Kumar et al. 1999; Gershunov et al. 2001). Values of the 
32-year correlations were between −0.4 and −0.45 at the 
beginning of the 1900s, before increasing in magnitude to 
roughly −0.55 with peak values near −0.6 for the period 
1935–1980 (see discussion of Fig. 6 below). The correla-
tion then decreased sharply in magnitude in recent decades 
to roughly −0.2, a value that is not significantly different 
from 0 at the 90  % level. At the same time the associa-
tion between ENSO and the East Asian Summer Monsoon 
(EASM) has been strengthening (e.g., Wu et al. 2012).

Thus, after peaking in the mid-twentieth century, the 
AIR–ENSO correlation has since weakened dramatically. 
One notable instance of this apparent breakdown in the 
negative relationship between the ISM and El Niño was 
the 1997 monsoon season, in which AIR was near normal 
despite the presence of a strong El Niño event. This led to 
significant errors in the seasonal monsoon forecast for that 
year (Kumar et al. 2006).

Multiple theories have been proposed for the observed 
trends in the ENSO–monsoon relationship, ranging from 
the influence of the North Pacific (Kinter et  al. 2002), 
the tropical South Atlantic (Kucharski et  al. 2009), the 
Indian Ocean Dipole (Ashok et  al. 2004), a strengthen-
ing of the jet-stream over the North Atlantic (Chang 
et al. 2001), and global warming (Kumar et al. 1999). In 
addition to these hypotheses, it has been noted that the 
observed changes could arise simply due to sampling 
variability (Gershunov et  al. 2001; DelSole and Shukla 
2012). Gershunov et al. (2001) (hereafter G2001) in par-
ticular showed that the association between ENSO and 
the monsoon had undergone decadal-scale fluctuations in 
strength since the late 1800s in the observations, and that 
these fluctuations were actually lower in magnitude than 
what would be expected from simply correlating two 
white noise time series.

In this study we analyze a suite of integrations made 
using a state-of-the-art seasonal prediction model (Molteni 
et al. 2011) to expand upon these previous works. We show 
that the observed changes in the strength of the monsoon-
ENSO relationship are consistent with fluctuations due sim-
ply to random sampling variations of internal climate vari-
ability. We find that nearly identical background states can 
produce values of the monsoon–ENSO correlation ranging 
from −0.73 to 0.47, and differences between 32-year seg-
ments range from −0.89 to 0.85. The observed changes in 
the AIR–NINO3 correlation over the past 100  years can-
not be distinguished from changes due to sampling at the 
90 % confidence level. Thus, based on our model results, 
we cannot reject the hypothesis that sampling variability is 
responsible for the observed variations in the ENSO–mon-
soon relationship at the 90 % level in favor of the impact of 
climate change.

2 � Materials and methods

We analyze a suite of 7-month retrospective forecasts 
(hindcasts) made using a model based on the European 
Centre for Medium-Range Weather Forecasting (ECMWF) 
Ensemble Prediction System as part of Project Minerva 
(e.g., Zhu et  al. 2015; Manganello et  al. 2016). Runs 
were initialized May 1 and November 1 for each year in 
the period 1980–2011. Integrations were performed using 
the ECMWF Integrated Forecast System (IFS) coupled to 
Nucleus for European Modeling of the Ocean (NEMO) in 
a configuration similar to that of System 4 (Molteni et al. 
2011). Integrations were performed for three different 
atmospheric resolutions: T319L91 (64  km horizontal res-
olution on the reduced Gaussian grid, 51 ensemble mem-
bers), T639L91 (32 km horizontal resolution, 15 ensemble 
members), and T1279L91 (16 km horizontal resolution, 15 
ensemble members) each with 91 levels in the vertical and 
coupled to the same 1-degree ocean resolution (refined to 
1/3 degree near the equator).

In this work we focus on the boreal summer monsoon 
season (June–September; JJAS) in the 7-month 51-member 
T319 experiments initialized each May 1. Given that the 
length of the individual integrations is 7 months the JJAS 
means for 1 year are only related to values from the pre-
vious or following year in that they are generated by the 
same model. They are not part of a single, continuous inte-
gration. Instead each May 1 the model state is reset to the 
best estimate of the observed climate state, plus small per-
turbations for each ensemble member (see Molteni et  al. 
2011). As a result, any multi-year time series of seasonal 
(JJAS) means represents a set of values that are drawn from 
related model states but are not part of a single continuous 
model trajectory. While ensemble members are numbered 1 
through 51 for convenience there is no more direct relation-
ship between ensemble member 1 in 1980 and 1981 than 
there is between ensemble members 1 and 51 in those same 
years.

We exploit this semi-independent aspect of the ensem-
ble members to construct multiple possible time series of 
1980–2011 JJAS values via bootstrapping by randomly 
selecting one ensemble member for each year (see Fig.  1 
for an illustration). In the simplest approach the same 
ensemble member is drawn for each year. However, as 
noted above, it is equally valid to draw any combination 
of members, leading to 5132 (~1054) potential combina-
tions for the 32-year period. For this work we create 10,000 
32-year samples from the T319 simulations and analyze the 
statistics of the monsoon and its relationship to other fea-
tures in the simulations, specifically ENSO.

The fact that all 51 members are generated via small per-
turbations around the same observed state and run for less 
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than a year ensures that all runs experience nearly identi-
cal external forcing and background state. The deep ocean, 
land surface, sea surface, sea ice, and other components of 
the system with the potential to vary on decadal timescales 
are all initialized with small perturbations around the same 
basic state. All runs are also initialized from equally pos-
sible initial conditions. Thus differences between the vari-
ous constructed time series arise purely from sampling dif-
ferent instances of climate noise, rather than decadal-scale 
variations.

3 � Results

3.1 � Model fidelity

As a measure of the consistency of the different climato-
logical means, and a check on the assertion that each time-
series is drawn from the same 30-year base state, we first 
calculate the 30-year climatology of SST for each of our 
10,000 samples. We then calculate the standard devia-
tion of these 10,000 climatologies at each grid point. As 
shown in Fig. 2, the regions where the standard deviation 
of the climatologies is largest closely corresponds to the 
areas with the highest interannual variability, suggesting 
that differences in sampling the intraseasonal variability 
of the different ensemble members can affect the 30-year 
climatology. However, the standard deviation of the cli-
matologies is small relative to the interannual variability, 
with relative magnitudes of generally 10–15 %. Thus dif-
ferences between any two climatologies at any given point 

are significantly less than their respective interannual vari-
ations. Similar ratios hold for precipitation (Fig. 3) and for 
700 m heat content (not shown).

As with all models, the climatological precipitation in 
the Minerva simulations include a measure of systematic 
error (Fig.  4). The model produces excess precipitation 
over the dry northwest region of India, as well as across the 
central plains. Rainfall is underestimated directly over the 
Western Ghats and overestimated to the east of the moun-
tains. Rainfall near Bangladesh and the southeast region of 
peninsular India is also underestimated. Interestingly, there 
is only minimal reduction in the mean bias as atmospheric 
horizontal resolution increases from 64  km (Fig.  4a) to 
16 km (Fig. 4b). The model also tends to produce too little 
interannual variability in the seasonal mean rainfall total at 
both 64 km (Fig. 5) at 16 km (not shown), particularly over 
the sharp topography of the Western Ghats.

Despite the presence of these systematic biases, the 
ensemble of T319 simulations generally succeeds in brack-
eting the interannual variability of the AIR (Fig. 6). While 
the correlation between the ensemble mean and observed 
AIR is relatively low (0.29), and not significantly different 
from zero, there are only a small number of years (2002, 
2004, 2009) where the observations fall entirely outside 
the envelope of the ensemble. In the majority of years the 
model successfully brackets the observations. This includes 
the much-discussed 1997 monsoon (noted above). While 
the ensemble mean suggests a drought, the strongest one 
in the model record, there are multiple ensemble mem-
bers with comparable or even higher AIR than the obser-
vations. This raises the question as to whether difficulty in 

Fig. 1   Schematic for random 
draws used to create sample 
time series from Minerva data. 
Black and red arrows denote 
possible draw pathways
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representing the 1997 monsoon, or any other unusual event, 
reflects model limitations or the likelihood of the event.

3.2 � The ENSO–monsoon relationship

The weakening of the ENSO–monsoon relationship is fre-
quently expressed as a reduction in the magnitude of the 
sliding correlation between AIR and an SST index repre-
senting ENSO activity as a function of time (e.g., Kumar 
et  al. 1999; Gershunov et  al. 2001; DelSole and Shukla 
2012). Here we calculate the observed contemporaneous 
JJAS AIR–NINO3 correlation for two sliding windows of 

different lengths, 21- and 32-years (Fig.  7) for the period 
1901–2010. The sliding correlations are performed as fol-
lows. Taking the 21-year window as an example, we first 
calculate the correlation between AIR and NINO3 for the 
period 1901–1921, then 1902–1922, etc., proceeding the 
end of the analysis period. Each 21- or 32-year period is 
linearly detrended to focus on the association between 
interannual variations in AIR and NINO3. Rainfall data is 
taken from the Indian Meteorological Department (IMD) 
0.25° gridded daily product (Pai et al. 2013) and SST data 
is taken from the Hadley Centre v1.1 product (Rayner et al. 
2003).

Fig. 2   Comparison of a 
interannual variations in sea 
surface temperature (SST) and 
b variations between individual 
climatologies from the 10,000 
samples generated from the 
random draw. Both panels 
depict standard deviations. Note 
reduction in scale by factor of 
10 in b



4075Sampling variability and the changing ENSO–monsoon relationship

1 3

As expected, the 21-year window shows much greater 
variability and sensitivity to choice of period than the 
32-year window, with changes in a single year produc-
ing changes in correlation magnitude by over 0.1. The 
32-year sliding window is generally less sensitive to single-
year changes in the window but jumps of 0.1 still occur. 
Given this sensitivity focusing on any specific value seems 
unwise; however, certain general patterns are apparent in 
both time series. Values tend to lie near −0.35 for the earli-
est part of the record (1901–1930), increase in magnitude 
to between −0.5 and −0.7 from 1930 to 1970, and then the 
magnitude decreases rapidly to roughly −0.2 in the current 

period. The maximum change in the 32-year sliding cor-
relation occurs between periods centered in the 1960s and 
recent decades, with a magnitude of 0.4.

A key question in understanding these observed changes 
in the strength of the ENSO–monsoon relationship is how 
likely they are to arise in the absence of changes in the back-
ground state of the system. G2001 used a similar bootstrap-
ping approach to the one presented here to show that correlat-
ing time series of white noise could generate a distribution of 
correlation coefficients consistent with the observed record. 
Building upon that approach, in this work we directly calcu-
late a distribution of potential AIR–NINO3 correlations using 

Fig. 3   Comparison of a inter-
annual variations in precipita-
tion and b variations between 
individual climatologies from 
the 10,000 samples generated 
from the random draw. Both 
panels depict standard devia-
tions. Note reduction in scale by 
factor of 10 in b
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our 10,000 constructed Minerva time series (Fig.  8). This 
allows us to not only further assess the fidelity of the Minerva 
simulations but also the impact of sampling a more realistic 
estimate of variability on the ENSO–monsoon relationship.

We first consider the case where the impact of internal 
variability is suppressed by taking the ensemble mean. 

The correlation between NINO3 and AIR in this case is 
−0.52, which is significantly stronger than the observed 
value of about −0.2 for the recent period. However, it is 
relatively close to the value of −0.45 for the full 109-
year observational period. Both −0.45 and −0.52 are 
significantly different from 0 at the 99  % confidence 
level, and indicate that the ENSO–monsoon relationship 
is negative and statistically significant when the influ-
ence of climate noise is reduced in both the model and 
observations.

(a)

(b)

Fig. 4   Ensemble mean bias in precipitation for June–September 
(JJAS) for the period 1980–2011 relative to the India Meteorological 
Department (IMD) 0.25 degree rainfall product for a T319/64 km and 
b T1279/16 km simulations

Fig. 5   Interannual standard deviation of JJAS precipitation for the 
period 1980–2011 from a IMD and b T319/64 km simulation
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The median of distribution is −0.27, placing the 
observed value of −0.2 well within one standard deviation 
of the peak. The minimum observed value of about −0.6 
also falls within the model distribution, and its magnitude 
is exceeded in ~1 % of the samples. Thus, even the strong-
est correlations observed are present in the Minerva simula-
tions, although as one would expect they occur relatively 
infrequently. This is despite the fact that the background 
state for simulations is for the current period only. It is also 
despite the fact that, as indicated by Fig. 5, the variability 
in the model is actually lower than observed and may be 
underestimating the spread in the distribution. Interestingly 
the Minerva simulations suggest a significant probability of 
observing a positive correlation between AIR and NINO3, 
although this value is not observed in the relatively short 
observational record.

The distribution of correlation values from the Min-
erva samples can be closely approximated as the distribu-
tion of a white noise process. To show this we calculate 
a 10,000-sample distribution of ρ(x,y) = rx + w

√

(1− r2), 
where w and x are independent identically distributed 

samples of length 32 drawn from white noise processes. 
We find that the two correlations distributions are nearly 
identical if r is chosen as the peak Minerva value of −0.27 
(Fig.  8). Thus in this metric the differences between the 
different ensemble members, which arise due to the cha-
otic internal variability of the model, are consistent with 
the differences introduced by sampling white noise. Exam-
ination of SST and precipitation composites (not shown) 
associated with the 50 strongest positive and negative 
correlations found no notable differences, further sup-
porting the idea that sampling noise is responsible for the 
differences.

In addition to calculating the distribution of correlation 
values generated by sampling variability we also calcu-
late the distribution of changes between different 32-year 
periods (Fig.  9). As we would expect the distribution 
peaks near zero, and has a standard deviation of 0.22. If 
we take the maximum change in 32-year correlations from 
the observed record of ~0.4, we find that changes of this 
magnitude occur in 10 % of the cases for random samples 
drawn from the Minerva simulations. Thus, while a change 

Fig. 6   JJAS all-India rainfall (AIR) in mm/day for the period 1980–2011 from the T319/64 km Minerva simulations (red line denotes ensemble 
mean, red crosses denote individual ensemble members) and observations from IMD (black line)
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of this magnitude is a somewhat unusual occurrence, it 
falls comfortably within the range expected from sampling. 
This distribution is almost identical to the one produced 
by taking 32-year samples from two separate white noise 
processes (Fig. 9), consistent with G2001. Thus, our results 
demonstrate that observed changes in the ENSO–monsoon 
relationship can be plausibly explained by random sam-
pling of internal climate variability in the absence of any 
changes in the background state.

4 � Discussion

In this work we investigate the impact of sampling and 
internal variability on the diagnosed relationship between 
all-India rainfall and ENSO in a large suite of hindcasts 
made using a world-class seasonal forecast model as part 
of Project Minerva. We find that we can reproduce the full 

range of correlation coefficients observed since the begin-
ning of the twentieth century simply by sampling different 
representations of internal climate variability during the 
period 1980–2011. By calculating the differences between 
32-year samples we can also reproduce the full range of 
observed changes in correlation strength as well.

The results of our experiments indicate that a changing 
background state is not a necessary condition for producing 
a wide range of values in the correlation between ENSO 
and the monsoon, a contribution from climate change in the 
observed record cannot be ruled out using this approach. 
We further show that, consistent with previous studies, 
the distribution of correlation coefficients from the Min-
erva samples can be closely approximated as a white noise 

Fig. 7   21-Year (black) and 32-year (green) sliding correlation 
between JJAS AIR and NINO3 index

Fig. 8   Distribution of AIR–NINO3 correlation coefficients. Black 
bar denotes median value from the 10,000 Minerva samples. Red bar 
denotes value from ensemble mean. Light blue bar denotes recent 
observed value, dark blue bar denotes observed value with greatest 
magnitude. Black line denotes values from 10,000 samples from a 
white noise process with a correlation of −0.27
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process. Our results strongly support the hypothesis that 
sampling variability, rather than a changing background 
state, is responsible for the observed fluctuations in the 
AIR–NINO3 correlation during the past hundred years.
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